Diepoxyrollin and Diepomuricanin B: Two New Diepoxyacetogenins from *Rollinia membranacea* Seeds

Sevser Sahpaz, Reynald Hocquemiller, and André Cavé

Laboratoire de Pharmacognosie, associé au CNRS (URA 1843-BIOCIS), Faculté de Pharmacie, Université Paris-XI, 92296 Châtenay-Malabry cedex, France

Jairo Saez

Departamento de Química, Universidad de Antioquia, AA 1226 Medellin, Colombia

Diego Cortes*

Departamento de Farmacologia, Farmacognosia y Farmacodinamia, Facultad de Farmacia, Universidad de Valencia, 46100 Burjasot (Valencia), Spain

Received October 2, 1995[®]

Diepoxyrollin (1) and diepomuricanin B (2), two new Annonaceous acetogenins were isolated from the cytotoxic MeOH extract of the seeds of Colombian *Rollinia membranacea*. Five others known acetogenins were also isolated, dieporeticanin 1, dieporeticanin 2, diepomuricanin A, rollinone, and sylvaticin. Their structures were elucidated on the basis of spectral data. Compounds 1 and 2 belong to the rare type of diepoxyacetogenins, which are probably precursors of the mono-tetrahydrofuran acetogenins.

In our previous studies about *Rollinia membranacea* TR. & PL. seeds, we have reported two new adjacent bis-tetrahydrofuran (THF) acetogenins, rioclarin and membranacin,¹ and a new epoxyacetogenin, tripoxyrollin, bearing three epoxy functions in place of THF rings.² The epoxyacetogenins, which can be isolated from the less polar fractions of natural extracts of Annonaceae, rank among the natural precursors of mono- or bis-THF acetogenins. Looking for natural antitumor compounds from the seeds of R. membranacea, we have succeeded in the isolation and characterization of a series of acetogenins. These include five epoxy-acetogenins having two epoxy functions, diepoxyrollin (1), diepomuricanin B (2), diepomuricanin A (3),³ dieporeticanins 1 and 2 (4,5);⁴ an "iso"-acetogenin bearing a saturated γ -lactone, rollinone (or iso-rolliniastatin 1) (6);^{5,6} and a nonadjacent bis-THF acetogenin, sylvaticin (7).⁷ Two of them, dieporeticanins 1 and 2 (4,5), were isolated as a mixture; recently, they were also reported as a mixture from Annona reticulata seeds, a Vietnamese Annonaceae.⁴ In this paper, we describe the isolation and structural elucidation of two new acetogenins, diepoxyrollin (1) and diepomuricanin B (2).

Diepoxyrollin (1) was isolated as a white wax. The molecular weight was indicated by a peak at m/z 581 $[M + Li]^+$ and another at m/z 575 $[M + H]^+$. HRCIMS (isobutane) from $[M^+]$ m/z 574.4900, showed the molecular formula $C_{37}H_{66}O_4$ (calcd 574.4893).

The existence of an unsaturated γ -lactone was first suggested by a positive Kedde reaction, IR carbonyl absorption at 1750 cm⁻¹, and UV λ max at 208 nm. Moreover, the ¹H-NMR (200 MHz, CDCl₃) signals at δ 6.96 (d, H-35), 4.96 (dq, H-36) and 1.36 (d, H-37) and the ¹³C-NMR (50 MHz, CDCl₃) signals at δ 173.92 (C-1), 134.23 (C-2), 25.10 (C-3), 148.81 (C-35), 77.33 (C-36), and 19.13 (C-37) were typical for an α,β -unsaturated γ -lactone without a hydroxyl group at the C-4 position, a moiety typically found in most acetogenins.^{8,9}

The existence of epoxides instead of the THF rings in **1** was certified by NMR experiments indicating three multiplets at δ 1.47 (H-14,21), δ 1.65 (H-17,18), and δ 2.94 (H-15,16 and H-19,20). The integration of the multiplet at δ 2.94 for four protons suggested the presence of two epoxide rings. The ¹³C NMR of **1** showed two resonances due to oxygen-bearing carbons at δ 56.38 and 57.28, integrating for four carbon atoms (C-15,16 and C-19,20) (Figure 1).

The FABMS spectrum with lithium of **1** showed a single peak at m/z 581 in the molecular ion region corresponding to the lithiated molecule. The location of the epoxy rings along the alkyl chain of **1** was deduced

S0163-3864(96)00213-3 CCC: \$14.00 © 1997 American Chemical Society and American Society of Pharmacognogy

Figure 1. ¹³C-NMR data* (¹H NMR** in parentheses) of diepoxyrollin (1).*** *Chemical shifts within a difference $\Delta \delta$ < 1 ppm, may be inverted. ** $J_{3-4} = 7.5$ Hz; $J_{3-35} = 1.5$ Hz; $J_{33-34} = 7.5$ Hz; $J_{35-36} = 1.5$ Hz; $J_{36-37} = 7.5$ Hz. ***¹H and ¹³C NMR are very similar to those of diepomuricanin B (2).

Figure 2. Li FABMS fragment ions of diepoxyrollin (1) and diepomuricanin B (2); CID, constant B/E linked-scan spectrum.

by collision-induced dissociations (CID) of $[M + Li]^+$ ions, using linked-scan analysis at constant B/E.³ Thus, a series of significant fragment-ion peaks was observed, all of which retained lithium (Figure 2).

Besides loss of H₂O, leading to a fragment ion at m/z 563, fragmentation of the γ -lactone ring was recognized by loss of 28 (CO) and 44 (CO₂) mass units (m/z 553 and m/z 537, respectively). The presence of two pairs of peaks at m/z 301/313, m/z 371/383 suggested the position of epoxy rings to be at C-15/16 and C-19/20. Thus, the epoxy rings were each separated from one another by two methylenes. Two peaks at m/z 315 and 303 formed by fragmentation of the epoxide ring placed at C-15,16 and containing the methyl terminal were also observed (Figure 2).

The EIMS fragment ions of **1** showed a base peak at m/z 295 corresponding to the fragmentation of the first epoxide ring with regard to the lactone (between C-15 and C-16). On the other hand, a series of fragment ions between the lactone moiety and the epoxide ring with regard to the lactone was also observed.

Diepomuricanin B (2) was isolated as a white amorphous solid. Its molecular weight was determined by Li-FABMS at m/z [M + Li]⁺ 553. HRCIMS (isobutane) from [M⁺] at m/z 546.2516, showed the molecular formula $C_{35}H_{62}O_4$ (calcd 546.2778).

All spectral data in ¹H NMR and ¹³C NMR for **2** were very similar to those of **1**, which proved a structure type

diepoxyacetogenin having a γ -lactone α,β -unsaturated without a hydroxyl at the C-4 position. In fact, the difference with diepoxyrollin (1) was deduced by examination of MS data. The experience of FABMS for 2 in presence of lithium, CID of $[M + Li]^+$ ions, using linked scan analysis at constant B/E, was employed. The characteristic fragmentation patterns obtained allowed us to confirm the presence of two epoxy rings and their location along the alkyl chain (between C-17/18 and C-21/22 (Figure 2). In the EIMS of **2**, the main peak corresponding to the fragmentation of the first epoxy ring (between C-17 and C-18) was at m/z 323. The series of fragmentation ions between the lactone moiety and the epoxy ring of 2 were also observed with two additional fragments at m/z 279 and m/z 293 (between C-15,16 and C-16,17, respectively) not found for 1, confirming the location of epoxide rings.

Diepoxyrollin (1) and diepomuricanin B (2) are two new members of the diepoxyacetogenins class, formed by eight compounds so far.⁹ In addition to **1** and **2**, three known diepoxyacetogenins, diepomuricanin A (3) and dieporeticanins 1 and 2 (4,5) were isolated and identified by ¹H-NMR, ¹³C-NMR, and MS spectra, from *R. mem*branacea seeds; those three compounds were previously reported from Annona muricata and A. reticulata;^{3,4,9,10} as well as rollinone (6) and sylvaticin (7), previously isolated from *Rollinia papilionella*^{5,6} and *R. sylvatica*, respectively. Rollinone (or isorolliniastatin 1) (6) and all of the other described "iso"-acetogenins must not be considered as natural products but as artifacts of purification from classical mono- or bis-THF acetogenins hydroxylated in the 4 position as recently proved.^{11–13} Translactonization of sylvaticin (4-hydroxyacetogenin) (7) into isosylvaticin (7a) (mixture of 2,4-cis and 2,4trans), is accomplished quantitatively after treatment with an organic solution of 10% diethylamine during 18 h or after simple elution from Si gel column with a solvent mixture as hexane-EtOAc-diethylamine (6:3: 1).

Experimental Section

General Experimental Procedures. Optical rotations were measured with a Schmidt–Haensch Polartronic I at 589 nm. UV spectra were obtained in MeOH on a Unicam 1800 spectrometer. IR spectra were recorded in film on a Perkin-Elmer 257 unit. The ¹H-NMR and ¹³C-NMR spectra (in CDCl₃ solution) were recorded using Bruker AC-200 (at 200 and 50 MHz, respectively) and Bruker AM-400 (at 400 and 100 MHz, respectively) systems. The EIMS was performed on a Nermag–Sidar spectrometer; and the FABMS, on a Kratos MS-80. TLC analysis was performed on 0.2-mm precoated plates (Si gel 60 F₂₅₄), and spots were detected by spraying with Kedde's reagent^{8,11} and 50% H₂SO₄.

Plant Material. Seeds of *R. membranacea* TR. & PL. were collected from the region of Antioquia in San Luis, on the canyon of Rio Claro at 330 m altitude in Colombia. A voucher specimen (SM 1106) was deposited at the University of Antioquia in Medellin.

Extraction and Isolation. Extraction and fractionation were monitored by the brine shrimp test (BST).¹⁴ Dried, powdered seeds (1900 g) from *R. membranacea* were extracted with MeOH by Soxhlet extraction. The MeOH extract (**E1**) showed important cytotoxicity with the BST ($LC_{50} = 1.5 \times 10^{-2} \mu g/mL$). The concentrated extract was fractionated by liquid-liquid partition between hexane and 5% aqueous MeOH to yield 467 g of a hexane-soluble fraction (E2) and an aqueous MeOHsoluble fraction (E3). E3 was partially evaporated under reduced pressure and extracted with CH₂Cl₂ to yield the H_2O -soluble fraction (E4) and 145 g of the bioactive CH₂Cl₂-soluble fraction (E5). E5 (100 g) (BST, $LC_{50} = 3 \times 10^{-3} \,\mu \text{g/mL}$) was subjected to flash column chromatography over Si gel 60 and gradually eluted by mixtures of increasing polarity containing petroleum ether, CH_2Cl_2 , and MeOH. Dieporeticanins 1 and 2 (4,5) (14 mg) were obtained as a mixture. Diepoxyrolline (1) (40 mg) and diepomuricanins A (3) (5 mg) and B $\{2\}$ (10 mg) were all purified by column chromatography over Si gel 60 H column and eluted with $C_6H_6-(CH_3)_2$ -CHOH (97:3). Rollinone (6) (750 mg) and sylvaticin (7) (250 mg) were purified by flash chromatography and eluted with cyclohexane-EtOAc (50:50).

Diepoxyrollin (1): $C_{37}H_{66}O_4$; $[\alpha]_D = +11^\circ$ (*c* 0.85, CHCl₃); UV λ max nm 208; IR (film) ν max 2910, 2845, 1745 cm⁻¹; Li-FABMS (m - NBa) $m/z 581 [M + Li]^+$, 575 [M + H]⁺, see Figure 2; EIMS m/z 295, 265, 251, 237, 223, 209, 195, 181, 167, 153, 139, 125, 111, 97; ¹H NMR (200 MHz, CDCl₃) and ¹³C-NMR (50 MHz, CDCl₃) data, see Figure 1.

Diepomuricanin B (2): $C_{35}H_{62}O_4$; $[\alpha]_D = +10^\circ$ (*c* 0.75, CHCl₃); UV λ max nm 208; IR (film) ν max 3400, 2910, 2845, 1745 cm⁻¹; Li-FABMS (*m* – NBa) *m*/*z* 553 [M + Li]⁺, see Figure 2; EIMS *m*/*z* 323, 293, 279, 97; ¹H-NMR (200 MHz, CDCl₃) and ¹³C-NMR (50 MHz, CDCl₃) data, see Figure 1.

Translactonization of 7 To Give 7a. Sylvaticin (7) (20 mg) was treated in an EtOAc-diethylamine (90:10) solution with Si gel at room temperature for 7 days to afford isosylvaticin (mixture of 2,4-cis and 2,4-trans) (7a) (quantitative yield): white wax; $C_{37}H_{66}O_8$; $[\alpha]_D + 23^\circ$ (*c* 0.3, MeOH); UV λ max nm (MeOH) 204; IR (film) ν max 3440, 2900, 2840, 1765, 1705 cm⁻¹; CIMS (CH₄) m/z $[MH]^+ 639$, $[MH - H_2O]^+ 621$, $[MH - 2 H_2O]^+ 603$, [MH-3 H₂O]⁺ 585, 467, 449, 431, 397, 379, 361, 339, 321, 311, 309, 293, 267 (100%); Li-FABMS (m-NBa) m/z [MLi]⁺ 645; ¹H-NMR resonances were assigned by analysis of COSY 45 (200 MHz, CDCl₃) δ 4.36 (m, H-4

cis), 4.53 (m, H-4 trans), 3.85 (m, H-12, 15, 19, 20, 23), 3.42 (m, H-16,24), 3.09 and 3.06 (m, H-35b cis and trans), 3.00 and 3.02 (m, H-2 cis and trans), 2.73 and 2.70 (m, H-35a cis and trans), 2.21 (s, CH₃-37), 1.25-1.95 (m, CH2-5 to -11, -13, -14, -17, -18, -21, -22, and -25-33), 0.88 (t, CH₃-34); ¹³C-NMR multiplicities were determined by spin-echo correlated spectroscopy; heteronuclear correlation ¹H-¹³C (XH CORR) was carried out (50 MHz, CDCl₃) & 205.42 (C-36), 178.14 and 178.67 (C-1, cis and trans), 82.81 and 82.19 (C-23 and C-20), 81.74 and 79.16 (C-15 and C-12), 79.16 and 78.74 (C-4, cis and trans), 74.08 and 73.82 (C-16 and C-24), 72.03 (C-19), 44.02 and 43.57 (C-35, cis and trans), 35.39 (C-3 and C-17), 34.29 and 36.54 (C-2, cis and trans), 33.05, 32.95, and 32,20 (C-5, C-18, and C-25), 31.73 (C-32), 29.76 (C-37), 23.88-29.17 (C-6-C-11, C-13, -14, -21, -22 and C-26-C-31), 22.50 (C-33), and 13.93 (C-34).

References and Notes

- (1) Saez, J.; Sahpaz, S.; Villaescusa, L.; Hocquemiller, R.; Cavé, A.; Cortes, D. J. Nat. Prod. 1993, 56, 351-356.
- Sahpaz, S.; Figadère, B.; Saez, J.; Hocquemiller, R.; Cavé, A.; Cortes, D. Nat. Prod. Lett. 1993, 2, 301-308.
- Laprévote, O.; Girard, C.; Das, B. C.; Laugel, T.; Roblot, F.; (3)Leboeuf, M.; Cavé, A. Rapid Comm. Mass Spectrom. 1992, 6, 352-355.
- (4) Tam, V. T.; Chi Hieu, P. Q.; Chappe, B.; Roblot, F.; Laprévote,
- O.; Figadère, B.; Cavé, A. Nat. Prod. Lett. 1994, 4, 255-262. (5) Dabrah, T. T.; Sneden, A. T. J. Nat. Prod. 1984, 47, 652-657.
- Abreo, M. J.; Sneden, A. T. J. Nat. Prod. 1990, 53, 983-985.
- (7) Mikolajczak, K. J.; Madrigal, R. V.; Rupprecht, J. K.; Hui, Y. H.; Liu, Y. M.; Smith, D. L.; McLaughlin, J. L. Experientia 1990, 46. 324-327
- (8) Fang, X. P.; Rieser, M. J.; Gu, Z. M.; Zhao, G. X.; McLaughlin,
- J. L. *Phytochem. Anal.* **1993**, *4*, 27–48. Zafra-Polo, M. C.; González, M. C.; Estornell, E.; Sahpaz, S.; Cortes, D. *Phytochemistry* **1996**, *42*, 253–271.
- (10)Hisham, A.; Šreekala, A.; Pieters, L.; De Bruyne, T.; Van den Heuvel, H.; Claevs, M. Tetrahedron 1993, 49, 6913-6920.
- (11) Cavé, A.; Cortes, D.; Figadère, B.; Hocquemiller, R.; Laprévote, O.; Laurens, A.; Leboeuf, M. Phytochemical Potential of Tropical Plants. In Recent Advances in Phytochemistry, Downum, K. R., Romeo, J., Stafford, H. A., Eds.; Plenum Press: New York, 1993; Vol. 27, Chapter 8, pp 167–202.
 (12) Duret, P.; Gromek, D.; Hocquemiller, R.; Cavé, A.; Cortes, D. J.
- Nat. Prod. 1994, 57, 911-916.
- (13) Duret, P.; Laurens, A.; Hocquemiller, R.; Cortes, D.; Cavé, A. Heterocycles 1994, 39, 741–749.
- (14) Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jackobsen, L. B.; Nichols, D. E.; McLaughlin, J. L. Planta Med. 1982, 45, 31-34.

NP960213V